Расщепление атомов в домашних условиях. Деление ядер: процесс расщепления атомного ядра. Ядерные реакции. Частицы - переносчики взаимодействий

Часто говорят, что существуют два вида наук – большие науки и малые. Расщепление атома – большая наука. Она располагает гигантскими экспериментальными установками, колоссальными бюджетами и получает львиную долю Нобелевских премий.

Зачем физикам понадобилось расщеплять атом? Простой ответ – чтобы понять, как устроен атом, – содержит лишь долю истины, но есть и более общая причина. Говорить буквально о расщеплении атома не вполне правильно. В действительности речь идет о столкновении частиц высокой энергии. При столкновении субатомных частиц, движущихся с большими скоростями, происходит рождение нового мира взаимодействий и полей. Несущие огромную анергию осколки материи, разлетающиеся после столкновений, таят в себе секреты природы, которые от “сотворения мира” оставались погребенными в недрах атома.

Установки, на которых осуществляется столкновение частиц высоких энергий, – ускорители частиц – поражают своими размерами и стоимостью. Они достигают нескольких километров в поперечнике, и по сравнению с ними даже лаборатории, в которых изучаются столкновения частиц, кажутся крошечными. В других областях научных исследований оборудование размещается в лаборатории, в физике высоких энергий лаборатории пристраиваются к ускорителю. Недавно Европейский центр ядерных исследований (ЦЕРН), расположенный недалеко от Женевы, выделил несколько сотен миллионов долларов на строительство кольцевого ускорителя. Длина окружности сооружаемого для этой цели туннеля достигает 27 км. Ускоритель, получивший название ЛЭП (LEP, Large Electron-Positron ring-большое электрон– позитронное кольцо), предназначен для ускорения электронов и их античастиц (позитронов) до скоростей, всего лишь “на волосок” отличающихся от скорости света. Чтобы иметь представление о масштабах энергии, вообразим, что вместо электронов до таких скоростей разгоняется монетка достоинством в один пенни. В конце цикла ускорения она обладала бы энергией, достаточной для производства электроэнергии на сумму 1000 млн. долл.! Неудивительно, что подобные эксперименты принято относить к физике “высоких энергий”. Двигаясь внутри кольца навстречу друг другу, пучки электронов и позитронов испытывают лобовые столкновения, при которых электроны и позитроны аннигилируют, высвобождая энергию, достаточную для рождения десятков других частиц.

Что это за частицы? Некоторые из них – те самые “кирпичики”, из которых построены мы с вами: протоны и нейтроны, составляющие атомные ядра, и обращающиеся вокруг ядер электроны. Другие частицы обычно в окружающем нас веществе не встречаются: их век чрезвычайно короток, и по истечении его они распадаются на обычные частицы. Число разновидностей таких нестабильных короткоживущих частиц поразительно: их известно уже несколько сотен. Подобно звездам, нестабильные частицы слишком многочисленны, чтобы их различать “по именам”. Многие из них обозначены только греческими буквами, а некоторые – просто числами.

Важно иметь в виду, что все эти многочисленные и разнообразные нестабильные частицы отнюдь не являются в прямом смысле составными частями протонов, нейтронов или электронов. Сталкиваясь, электроны и позитроны высоких энергий вовсе не разлетаются на множество субатомных осколков. Даже при столкновениях протонов высоких энергий, заведомо состоящих из других объектов (кварков), они, как правило, не расщепляются на составные части в обычном смысле. То, что происходит при таких столкновениях, лучше рассматривать как непосредственное рождение новых частиц из энергии столкновения.

Лет двадцать назад физики были совершенно сбиты с толку многочисленностью и разнообразием новых субатомных частиц, которым, казалось, не будет конца. Невозможно было понять, для чего столько частиц. Может быть, элементарные частицы подобны обитателям зоопарка с их неявно выраженной принадлежностью к семействам, но без какой-либо четкой систематики. Или, возможно, как полагали некоторые оптимисты, элементарные частицы таят в себе ключ к Вселенной? Что такое наблюдаемые физиками частицы: малозначительные и случайные осколки материи или возникающие на наших глазах очертания смутно ощущаемого порядка, указывающего на существование богатой и сложной структуры субъядерного мира? Ныне в существовании такой структуры нет никаких сомнений. Микромиру присущ глубокий и рациональный порядок, и мы начинаем понимать, каково значение всех этих частиц.

Первый шаг к пониманию микромира был сделан в результате систематизации всех известных частиц, подобно тому как в XVIII в. биологи составляли подробнейшие каталоги видов растений и животных. К числу наиболее важных характеристик субатомных частиц относятся масса, электрический заряд и спин.

Поскольку масса и вес связаны между собой, частицы с большой массой часто называют “тяжелыми”. Соотношение Эйнштейна Е =mc^ 2 указывает, что масса частицы зависит от ее энергии и, следовательно, от скорости. Движущаяся частица тяжелее покоящейся. Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку эта масса не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света. Наиболее очевидный пример частицы с нулевой массой покоя – фотон. Считается, что электрон – самая легкая из частиц с ненулевой массой покоя. Протон и нейтрон почти в 2000 раз тяжелее, тогда как масса самой тяжелой частицы, которую удалось создать в лаборатории (Z-частицы), примерно в 200 000 раз больше массы электрона.

Электрический заряд частиц меняется в довольно узком диапазоне, но, как мы отмечали, всегда кратен фундаментальной единице заряда. Некоторые частицы, например фотон и нейтрино, не имеют электрического заряда. Если заряд положительно заряженного протона принять за +1, то заряд электрона равен -1.

В гл. 2 мы ввели еще одну характеристику частиц – спин. Он также всегда принимает значения, кратные некоторой фундаментальной единице, которая по историческим причинам выбрана равной 1/2. Так, протон, нейтрон и электрон имеют спин 1/2, а спин фотона равен 1. Известны также частицы со спином 0, 3/2 и 2. Фундаментальных частиц со спином больше 2 не обнаружено, и теоретики полагают, что частиц с такими спинами не существует.

Спин частицы – важная характеристика, и в зависимости от его величины все частицы разделяются на два класса. Частицы со спинами 0, 1 и 2 называются “бозонами” – в честь индийского физика Чатьендраната Бозе, а частицы с полуцелым спином (т.е. со спином 1/2 или 3/2 - “фермионами” в честь Энрико Ферми. Принадлежность к одному из этих двух классов является, вероятно, наиболее важной в перечне характеристик частицы.

Другая важная характеристика частицы – ее время жизни. До недавнего времени считалось, что электроны, протоны, фотоны и нейтрино абсолютно стабильны, т.е. имеют бесконечно большое время жизни. Нейтрон остается стабильным, пока он “заперт" в ядре, но свободный нейтрон распадается примерно за 15 мин. Все остальные известные частицы в высшей степени нестабильны, их времена жизни колеблются в пределах от нескольких микросекунд до 10-23 с. Такие интервалы времени кажутся непостижимо малыми, однако не следует забывать, что частица, летящая со скоростью, близкой к скорости света (а большинство частиц, рождающихся на ускорителях, движутся именно с такими скоростями), успевает пролететь за микросекунду расстояние в 300 м.

Нестабильные частицы претерпевают распад, представляющий собой квантовый процесс, и поэтому в распаде всегда есть элемент непредсказуемости. Продолжительность жизни конкретной частицы невозможно предсказать заранее. На основе статистических соображений можно предсказать лишь среднее время жизни. Обычно говорят о периоде полураспада частицы – времени, за которое популяция тождественных частиц сокращается наполовину. Эксперимент показывает, что уменьшение численности популяции происходит по экспоненте (см. рис. 6) и период полураспада составляет 0,693 от среднего времени жизни.

Физикам недостаточно знать, что та или иная частица существует – они стремятся понять, какова ее роль. Ответ на этот вопрос зависит от перечисленных выше свойств частиц, а также от характера сил, действующих на частицу извне и внутри ее. В первую очередь свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются андронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами, что означает “легкие”. Познакомимся кратко с каждым из этих семейств.

Деление ядра - это расщепление тяжелого атома на два фрагмента примерно равной массы, сопровождаемое выделением большого количества энергии.

Открытие ядерного деления начало новую эру - «атомный век». Потенциал возможного его использования и соотношение риска к пользе от его применения не только породили множество социологических, политических, экономических и научных достижений, но также и серьезные проблемы. Даже с чисто научной точки зрения процесс ядерного деления создал большое число головоломок и осложнений, и полное теоретическое его объяснение является делом будущего.

Делиться - выгодно

Энергии связи (на нуклон) у разных ядер различаются. Более тяжелые обладают меньшей энергией связи, чем расположенные в середине периодической таблицы.

Это означает, что тяжелым ядрам, у которых атомное число больше 100, выгодно делиться на два меньших фрагмента, тем самым высвобождая энергию, которая превращается в кинетическую энергию осколков. Этот процесс называется расщеплением

В соответствии с кривой стабильности, которая показывает зависимость числа протонов от числа нейтронов для стабильных нуклидов, более тяжелые ядра предпочитают большее число нейтронов (по сравнению с количеством протонов), чем более легкие. Это говорит о том, что наряду с процессом расщепления будут испускаться некоторые «запасные» нейтроны. Кроме того, они будут также принимать на себя часть выделяющейся энергии. Изучение деления ядра атома урана показало, что при этом выделяется 3-4 нейтрона: 238 U → 145 La + 90 Br + 3n.

Атомное число (и атомная масса) осколка не равна половине атомной массы родителя. Разница между массами атомов, образовавшихся в результате расщепления, обычно составляет около 50. Правда, причина этого еще не совсем понятна.

Энергии связи 238 U, 145 La и 90 Br равны 1803, 1198 и 763 МэВ соответственно. Это означает, что в результате данной реакции высвобождается энергия деления ядра урана, равная 1198 + 763-1803 = 158 МэВ.

Самопроизвольное деление

Процессы спонтанного расщепления известны в природе, но они очень редки. Среднее время жизни указанного процесса составляет около 10 17 лет, а, например, среднее время жизни альфа-распада того же радионуклида составляет около 10 11 лет.

Причина этого заключается в том, что для того, чтобы разделиться на две части, ядро должно сначала подвергнуться деформации (растянуться) в эллипсоидальную форму, а затем, перед окончательным расщеплением на два фрагмента, образовать «горлышко» посредине.

Потенциальный барьер

В деформированном состоянии на ядро действуют две силы. Одна из них - возросшая поверхностная энергия (поверхностное натяжение капли жидкости объясняет ее сферическую форму), а другая - кулоновское отталкивание между осколками деления. Вместе они производят потенциальный барьер.

Как и в случае альфа-распада, чтобы произошло спонтанное деление ядра атома урана, фрагменты должны преодолеть этот барьер с помощью квантового туннелирования. Величина барьера составляет около 6 МэВ, как и в случае с альфа-распадом, но вероятность туннелирования α-частицы значительно больше, чем гораздо более тяжелого продукта расщепления атома.

Вынужденное расщепление

Гораздо более вероятным является индуцированное деление ядра урана. В этом случае материнское ядро ​​облучается нейтронами. Если родитель его поглощает, то они связываются, высвобождая энергию связи в виде колебательной энергии, которая может превысить 6 МэВ, необходимых для преодоления потенциального барьера.

Там, где энергии дополнительного нейтрона недостаточно для преодоления потенциального барьера, падающий нейтрон должен обладать минимальной кинетической энергией для того, чтобы иметь возможность индуцировать расщепление атома. В случае 238 U энергии связи дополнительных нейтронов не хватает около 1 МэВ. Это означает, что деление ядра урана индуцируется только нейтроном с кинетической энергией больше 1 МэВ. С другой стороны, изотоп 235 U имеет один непарный нейтрон. Когда ядро ​​поглощает дополнительный, он образует с ним пару, и в результате этого спаривания появляется дополнительная энергия связи. Этого достаточно для освобождения количества энергии, необходимого для того, чтобы ядро преодолело потенциальный барьер и деление изотопа происходило при столкновении с любым нейтроном.

Бета-распад

Несмотря на то что при реакции деления испускаются три или четыре нейтрона, осколки по-прежнему содержат больше нейтронов, чем их стабильные изобары. Это означает, что фрагменты расщепления, как правило, неустойчивы по отношению к бета-распаду.

Например, когда происходит деление ядра урана 238 U, стабильным изобаром с А = 145 является неодим 145 Nd, что означает, что фрагмент лантан 145 La распадается в три этапа, каждый раз излучая электрон и антинейтрино, пока не будет образован стабильный нуклид. Стабильным изобаром с A = 90 является цирконий 90 Zr, поэтому осколок расщепления бром 90 Br распадается в пять этапов цепи β-распада.

Эти цепи β-распада выделяют дополнительную энергию, которая почти вся уносится электронами и антинейтрино.

Ядерные реакции: деление ядер урана

Прямое излучение нейтрона из нуклида со слишком большим их количеством для обеспечения стабильности ядра маловероятно. Здесь дело заключается в том, что нет кулоновского отталкивания, и поэтому поверхностная энергия имеет тенденцию к удержанию нейтрона в связи с родителем. Тем не менее это иногда происходит. Например, фрагмент деления 90 Br в первой стадии бета-распада производит криптон-90, который может быть находиться в возбужденном состоянии с достаточной энергией, чтобы преодолеть поверхностную энергию. В этом случае излучение нейтронов может происходить непосредственно с образованием криптона-89. по-прежнему неустойчив по отношению к β-распаду, пока не перейдет в стабильный иттрий-89, так что криптон-89 распадается в три этапа.

Деление ядер урана: цепная реакция

Нейтроны, испускаемые в реакции расщепления, могут быть поглощены другим ядром-родителем, которое затем само подвергается индуцированному делению. В случае урана-238 три нейтрона, которые возникают, выходят с энергией менее 1 МэВ (энергия, выделяющаяся при делении ядра урана - 158 МэВ - в основном переходит в кинетическую энергию осколков расщепления), поэтому они не могут вызвать дальнейшее деление этого нуклида. Тем не менее при значительной концентрации редкого изотопа 235 U эти свободные нейтроны могут быть захвачены ядрами 235 U, что действительно может вызвать расщепление, так как в этом случае отсутствует энергетический порог, ниже которого деление не индуцируется.

Таков принцип цепной реакции.

Типы ядерных реакций

Пусть k - число нейтронов, произведенное в образце делящегося материала на стадии n этой цепи, поделенное на число нейтронов, образованных на стадии n - 1. Это число будет зависеть от того, сколько нейтронов, полученных на стадии n - 1, поглощаются ядром, которое может подвергнуться вынужденному делению.

Если k < 1, то цепная реакция просто выдохнется и процесс остановится очень быстро. Именно это и происходит в природной в которой концентрация 235 U настолько мала, что вероятность поглощения одного из нейтронов этим изотопом крайне ничтожна.

Если k > 1, то цепная реакция будет расти до тех пор, пока весь делящийся материал не будет использован Это достигается путем обогащения природной руды до получения достаточно большой концентрации урана-235. Для сферического образца величина k увеличивается с ростом вероятности поглощения нейтронов, которая зависит от радиуса сферы. Поэтому масса U должна превышать некоторую чтобы деление ядер урана (цепная реакция) могло происходить.

Если k = 1, то имеет место управляемая реакция. Это используется в Процесс контролируется распределением среди урана стержней из кадмия или бора, которые поглощают большую часть нейтронов (эти элементы обладают способностью захватывать нейтроны). Деление ядра урана контролируется автоматически путем перемещения стержней таким образом, чтобы величина k оставалась равной единице.

В1939 г. Альберт Эйнштейн обратился к президенту Рузвельту с предложением приложить все усилия для того, чтобы раньше нацистов овла­деть энергией атомного распа­да. К тому времени эмигриро­вавший из фашистской Италии Энрико Ферми уже работал над этой проблемой в Колумбий­ском университете.

(В камере ускорителя Европейской лабора­тории физики элементарных частиц (CERN ), крупнейшего в Европе центре такого рода. Па­радоксально, но для исследования мельчайших частиц необходимы гигантские сооружения.)

Введение

В 1854 г. немец Генрих Гейслер . (1814-79) изобрел вакуумную стеклянную трубку с электродами, названную трубкой Гейслера, и ртутный насос, позволявший полу­чать высокий вакуум. Подсоединив к электродам трубки высоковольтную индукционную катушку, он получал на стекле напротив отрицательного элек­трода зеленое свечение. В 1876 г. не­мецкий физик Евгений Гольдштейн (1850-1931) предположил, что это све­чение вызвано лучами, испускаемыми катодом, и назвал эти лучи катодными.

(Новозеландский физик Эрнест Резерфорд (1871-1937) в Кавендишской лаборатории Кембриджского университета, которую он возглавил в 1919 году.)


Электроны

Английский ученый Уильям Крукс (1832-1919) усовершенствовал трубку Гейслера и показал возможность от­клонения катодных лучей магнитным полем. В 1897 г. другой английский ис­следователь, Джозеф Томсон, предпо­ложил, что лучи представляют собой отрицательно заряженные частицы, и определил их массу, которая оказалась примерно в 2000 раз меньше массы атома водорода. Он назвал эти частицы электронами, взяв название, пред­ложенное несколькими годами ранее ирландским физиком Джорджем Стоуни (1826-1911), который теоретичес­ки рассчитал величину их заряда. Так стала очевидной делимость ато­ма. Томсон предложил модель, в кото­рой электроны были вкраплены в атом, как изюминки в кексе. А вскоре были обнаружены и другие входящие в со­став атома частицы. С 1895 г. в Кавен­дишской лаборатории приступил к ра­боте Эрнест Резерфорд (1871-1937), который вместе с Томсоном занялся исследованием радиоактивности урана и обнаружил два вида частиц, испускае­мых атомами этого элемента. Частицы с зарядом и массой электрона он назвал бета-частицами, а другие, положитель­но заряженные, с массой, равной массе 4 атомов водорода, - альфа-частицами. Кроме того, атомы урана были источни­ком высокочастотного электромагнит­ного излучения - гамма-лучей.

(Отто Ган и Лизе Майтнер. В 1945 году Ган был интернирован союзниками в Англию и только там узнал о присуждении ему Нобелевской премии по химии за 1944 г. «за открытие расщепления тяжелых ядер».)


Протоны

В 1886 г. Гольдштейн обнаружил еще одно излучение, распространяющее­ся в направлении, противоположном катодным лучам, и названное им катодными лучами. Позже было дока­зано, что они состоят из ионов атомов. Резерфорд предложил назвать положительный ион водорода про тоном (от греческого proton - пер­вый), т. к. считал ядро водорода составной частью ядер атомов всех остальных элементов. Таким образом, в начале XX в. было установлено существование трех суб­атомных частиц: электрона, протона и альфа-частицы. В 1907 г. Резерфорд стал профессо­ром Манчестерского университета. Здесь, пытаясь выяснить строение ато­ма, он провел свои знаменитые экспе­рименты по рассеянию альфа-частиц. Исследуя прохождение этих частиц через тонкую металлическую фольгу, он пришел к выводу, что в центре ато­ма расположено небольшое плотное ядро, способное отражать альфа-час­тицы. Помощником Резерфорда в то время был молодой датчанин физик Нильс Бор (1885-1962), который в 1913 г., в соответствии с недавно созданной квантовой теорией, пред­ложил модель строения атома, извест­ную как модель Резерфорда-Бора . В ней электроны вращались вокруг яд­ра подобно планетам вокруг Солнца.

( Энрико Ферми (1901-54) в 1938 г. получил Нобелевскую премию за работы по облучению вещества нейтронами. В 1942 г. впервые осуществил самоподдерживающуюся цепную реакцию распада атомных ядер.)

Модели атомов

В этой первой модели ядро состояло из положительно заряженных прото­нов и некоторого числа электронов, частично нейтрализующих их заряд; кроме того, вокруг ядра двигались до­полнительные электроны, суммарный заряд которых был равен положитель­ному заряду ядра. Альфа-частицы , как и ядра атомов гелия, должны были со­стоять из 4 протонов и 2 электронов. Прошло более 10 лет, прежде чем эта модель подверглась пересмотру. В 1930 г. немец Вальтер Боте (1891-1957) объявил об открытии нового ви­да радиоактивного излучения, возни­кающего при облучении бериллия аль­фа-частицами. Англичанин Джеймс Чедвик (1891-1974) повторил эти экс­перименты и пришел к выводу, что дан­ное излучение состоит из частиц, рав­ных по массе протонам, но не имею­щих электрического заряда. Они были названы нейтронами. Затем немец Вернер Гейзенберг (1901-76) предложил модель атома, ядро которого состояло только из протонов и нейтронов. Группа исследователей с одним из первых ускорителей субатомных частиц - циклотроном (1932). Этот прибор предназначен для ускоре­ния частиц и последующей бомбардировки ими специальных мишеней.

(Группа исследователей с одним из первых ускорителей субатомных частиц - циклотроном (1932). Этот прибор предназначен для ускоре­ния частиц и последующей бомбардировки ими специальных мишеней.)

Расщепление атома

Физики всего мира сразу же увидели в нейтронах идеальный инструмент для воздействия на атомы - эти тяжелые, не имеющие заряда частицы легко проникали в атомные ядра. В 1934-36 Италии Энрико Ферми (1901-54) их помощи получил 37 радиоактивных изотопов различных элементов. Поглощая нейтрон, атомное ядро становилось неустойчивым, и излучало энергию в виде гамма-лучей. Ферми облучал нейтронами и уран, надеясь пре вратить его в новый элемент - «уран В этом же направлении работ в Берлине немец Отто Ган (1879-1 S и австрийка Лизе Майтнер (1878 - 1968). В 1938 г. Майтнер, спасаясь от нацистов, уехала в Стокгольм, а продолжил работу вместе с Фридрихом Штрассманом (1902-80). Вскоре Ган и Майтнер, продолжая эксперимент и, сверяя результаты по переписке, обнаружили образование в облученном нейтронами уране радиоактивного бария. Майтнер предположила, что я атом урана (атомный номер 92) рас щепляется на два ядра: бария (атомный номер элемента с номером 43 позже назвали технецием ). Так была открыта возможность расщепления атомного ядра. Было установлено также, что при разрушении ядра атома урана выдаются 2-3 нейтрона, каждый из которых, в свою очередь, способен инициировать распад атомов урана, вызвать цепную реакцию с выделением огромного количества энергии...

Анри Беккерель

Когда-то учёные полагали, что атомы — это самые мелкие частицы. Но сто лет назад они обнаружили, что и атомы можно разделить на гораздо более мелкие частицы. Именно благодаря этому стало возможным создание атомной бомбы. В 1896 году французский учёный Анри Беккерель (1852-1908 гт.) случайно обнаружил, что некоторые атомы «радиоактивны», то есть испускают лучи.

В следующем году английский учёный Дж. Дж. Томсон (1856-1940 гт.) заметил, что светящиеся электрические лучи на самом деле являются электрически заряженньгми частицами, размер которых во множество раз меньше атома. Было доказано, что эти частицы — электроны — находятся в атомах.

Эрнест Резерфорд

Немного позже английский учёный Эрнест Резерфорд (1871-1937 гт.) обнаружил, что радиоактивность — это не что иное, как расщепление атомов с образованием других атомов. При распаде эти атомы также излучают потоки частиц, которые он назвал альфа- и бета-частицами. В 1911 году Резерфорд направил потоки альфа-частиц на золотую фольгу.

Большинство из них прошло прямо сквозь неё. но несколько отскочили назад. Он понял, что атомы не являются твёрдыми кусками материи, как считали до этого, а в основном представляют собой пустое пространство, и поэтому частицы обьгчно проходили сквозь фольгу. Но у них есть маленькие и плотные центральные положительно заряженные части — ядра, и именно о них ударились те несколько частиц, которые отскочили назад. В 1912 году вместе с Резерфордом начал работать датский учёный Нильс Бор (1885-1962 гг.). Бор предположил. что у каждого вида атома разное количество электронов, которые кружатся на различных расстояниях вокруг ядра, подобно планетам на солнечной орбите. Сегодня мы знаем, что электроны больше похожи на расплывчатые облака энергии, чем на планеты, но по существу идея Бора была правильной.

Расщепление атома В 1919 году Резерфорду впервые удалось расщепить атомы. Он обстреливал альфа-частицами газообразный азот, и в результате ядра водорода отделились от ядер азота. Тогда Резерфорд пришёл к убеждению, что все атомные ядра построены из ядер водорода, которые он назвал протонами. В 1932 году англичанин Джеймс Чедвик (1891— 1974 гг.) обнаружил в ядре ещё одну частицу — нейтрон. Нейтроны не имеют электрического заряда, в отличие от прогонов, имеющих положительный заряд, который уравновешивает отрицательный заряд электронов.

Итальянский учёный Энрико Ферми (1901— 1954 гг.) задался целью выяснить, что случится, если направить поток нейтронов на крупнейший из известных атомов — атом урана. Он полагал, что нейтроны соединятся с ураном и образуется ещё более крупный атом.

В действительности, как показала австрийский физик Лиза Мейтнер (1878-1968 гг.), атом урана расщепился на две части, образовав более мелкие атомы, такие как барий. При этом также произошло высвобождение дополнительных нейтронов. Если бы затем эти нейтроны, в свою очередь, расщепили и другие атомы урана, то могла бы начаться «цепная реакция» сголкно вений и расщеплений. Учёные поняли, что при расщеплении атомных ядер в подобной цепной реакции высвобождается огромное количество энергии.

Этой энергии до сгаточно, чтобы создать невероятно мощную бомбу. Воспользовавшись этой идеей, группа учёных под руководством американца Роберта Оппенгей-мера (1904-1967 гг.) создала первую атомную бомбу. В августе 1945 г., во время Второй мировой войны (1939-1945 гг.), американские урановые бомбы были сброшены на японские города Хиросиму и Нагасаки. Это привело к ужасающим и разрушительным последствиям.

Часто говорят, что существуют два вида наук – большие науки и малые. Расщепление атома – большая наука. Она располагает гигантскими экспериментальными установками, колоссальными бюджетами и получает львиную долю Нобелевских премий.

Зачем физикам понадобилось расщеплять атом? Простой ответ – чтобы понять, как устроен атом, – содержит лишь долю истины, но есть и более общая причина. Говорить буквально о расщеплении атома не вполне правильно. В действительности речь идет о столкновении частиц высокой энергии. При столкновении субатомных частиц, движущихся с большими скоростями, происходит рождение нового мира взаимодействий и полей. Несущие огромную анергию осколки материи, разлетающиеся после столкновений, таят в себе секреты природы, которые от “сотворения мира” оставались погребенными в недрах атома.

Установки, на которых осуществляется столкновение частиц высоких энергий, – ускорители частиц – поражают своими размерами и стоимостью. Они достигают нескольких километров в поперечнике, и по сравнению с ними даже лаборатории, в которых изучаются столкновения частиц, кажутся крошечными. В других областях научных исследований оборудование размещается в лаборатории, в физике высоких энергий лаборатории пристраиваются к ускорителю. Недавно Европейский центр ядерных исследований (ЦЕРН), расположенный недалеко от Женевы, выделил несколько сотен миллионов долларов на строительство кольцевого ускорителя. Длина окружности сооружаемого для этой цели туннеля достигает 27 км. Ускоритель, получивший название ЛЭП (LEP, Large Electron-Positron ring-большое электрон– позитронное кольцо), предназначен для ускорения электронов и их античастиц (позитронов) до скоростей, всего лишь “на волосок” отличающихся от скорости света. Чтобы иметь представление о масштабах энергии, вообразим, что вместо электронов до таких скоростей разгоняется монетка достоинством в один пенни. В конце цикла ускорения она обладала бы энергией, достаточной для производства электроэнергии на сумму 1000 млн. долл.! Неудивительно, что подобные эксперименты принято относить к физике “высоких энергий”. Двигаясь внутри кольца навстречу друг другу, пучки электронов и позитронов испытывают лобовые столкновения, при которых электроны и позитроны аннигилируют, высвобождая энергию, достаточную для рождения десятков других частиц.

Что это за частицы? Некоторые из них – те самые “кирпичики”, из которых построены мы с вами: протоны и нейтроны, составляющие атомные ядра, и обращающиеся вокруг ядер электроны. Другие частицы обычно в окружающем нас веществе не встречаются: их век чрезвычайно короток, и по истечении его они распадаются на обычные частицы. Число разновидностей таких нестабильных короткоживущих частиц поразительно: их известно уже несколько сотен. Подобно звездам, нестабильные частицы слишком многочисленны, чтобы их различать “по именам”. Многие из них обозначены только греческими буквами, а некоторые – просто числами.

Важно иметь в виду, что все эти многочисленные и разнообразные нестабильные частицы отнюдь не являются в прямом смысле составными частями протонов, нейтронов или электронов. Сталкиваясь, электроны и позитроны высоких энергий вовсе не разлетаются на множество субатомных осколков. Даже при столкновениях протонов высоких энергий, заведомо состоящих из других объектов (кварков), они, как правило, не расщепляются на составные части в обычном смысле. То, что происходит при таких столкновениях, лучше рассматривать как непосредственное рождение новых частиц из энергии столкновения.

Лет двадцать назад физики были совершенно сбиты с толку многочисленностью и разнообразием новых субатомных частиц, которым, казалось, не будет конца. Невозможно было понять, для чего столько частиц. Может быть, элементарные частицы подобны обитателям зоопарка с их неявно выраженной принадлежностью к семействам, но без какой-либо четкой систематики. Или, возможно, как полагали некоторые оптимисты, элементарные частицы таят в себе ключ к Вселенной? Что такое наблюдаемые физиками частицы: малозначительные и случайные осколки материи или возникающие на наших глазах очертания смутно ощущаемого порядка, указывающего на существование богатой и сложной структуры субъядерного мира? Ныне в существовании такой структуры нет никаких сомнений. Микромиру присущ глубокий и рациональный порядок, и мы начинаем понимать, каково значение всех этих частиц.