Эры и периоды таблица география. Шкала геохронологическая и история развития живых организмов. Новый геологический период

Геологам приходится иметь дело с толщами горных пород, накопившимися за длительную геологическую историю планеты. Необходимо знать, какие из слагающих изучаемую территорию пород моложе, а какие древнее, в какой последовательности они формировались, к каким интервалам геологической истории относится время их образования, а также уметь сопоставлять по возрасту удалённые друг от друга толщи горных пород.

Учение о последовательности формирования и возрасте горных пород называется геохронологией. Различаются методы относительной и методы абсолютной геохронологии.

Относительная геохронология

Методы относительной геохронологии - методы определения относительного возраста горных пород, которые лишь фиксируют последовательность образования горных пород относительно друг друга.

Эти методы базируются на нескольких простых принципах. В 1669 г. Николо Стено сформулировал принцип суперпозиции, гласящий, что в ненарушенном залегании каждый вышележащий слой моложе нижележащего . Обратим внимание, что в определении подчёркивается применимость принципа только в условиях ненарушенного залегания.

Метод определения последовательности образования слоёв, базирующийся на принципе Стено, часто называют стратиграфическим. Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору.

Следующий важнейший принцип, известный как принцип пересечений , сформулирован Джеймсом Хаттоном. Этот принцип гласит, что любое тело, пересекающее толщу слоев, моложе этих слоев .

Нужно отметить и ещё один важный принцип, гласящий, что время преобразования или деформации пород моложе, чем возраст образования этих пород .

Рассмотрим использование этих принципов на примере толщ осадочных пород, прорванных несколькими секущими магматическими телами.

Последовательность событий следующая. Первоначально происходило накопление осадочных толщ нижнего слоя (1), затем, последовательно накопление вышележащих слоев (2, 3, 4, 5), каждый из которых моложе нижележащего. Накопление осадочных пород в подавляющем большинстве случаев происходит в форме горизонтально лежащих слоев, так первоначально залегали и сформированные слои (1-5). Позднее эти толщи были деформированы (6), и в них внедрилось тело магматических пород 7. Затем, вновь горизонтально, началось накопление вышележащего слоя, залегающего на и внедрившемся магматическом теле. При этом, учитывая, что образующийся слой лежит на выровненной горизонтальной поверхности, очевидно, что его накоплению предшествовало выравнивание территории – её размыв (8). Вслед за размывом территории накопился следующий слой (9). Наиболее молодым образованием является магматическое тело 10.
Подчеркнём, что, рассматривая историю геологического развития территории, разрез которой изображён на рисунке, мы пользовались исключительно относительным временем, определяя лишь последовательность образования тел.

Ещё одна большая группа методов относительной геохронологии – биостратиграфические методы . Эти методы основаны на изучении окаменелостей - ископаемых остатков организмов, заключённых в слоях горных пород: в разновозрастных слоях пород встречаются разные комплексы остатков организмов, характеризующие развитие флоры и фауны в ту или иную геологическую эпоху. В основе методов лежит принцип, сформулированный Уильямом Смитом: одновозрастные осадки содержат одни и те же или близкие остатки ископаемых организмов . Этот принцип дополняется ещё одним важным положением, гласящим, что ископаемые флоры и фауны сменяют друг друга в определённом порядке . Таким образом, в основе всех биостратиграфических методов лежит положение о непрерывности и необратимости изменения органического мира – закон эволюции Ч. Дарвина. Каждый отрезок геологического времени характеризуется определёнными представителями флоры и фауны. Определение возраста толщ горных пород сводится к сравнению найденных в них ископаемых с данными о времени существования этих организмов в геологической истории. В качестве грубой аналогии сущности метода можно привести всем известные методы определения возраста в археологии: если при раскопках обнаружены только каменные орудия труда, то культура относится к каменному веку, присутствие бронзовых орудий даёт основание для её отнесения к бронзовому веку и т.п.

Среди биостратиграфических методов долгое время оставался важнейшим метод руководящих форм. Руководящими формами называют остатки вымерших организмов соответствующие следующим критериям:

  • эти организмы существовали короткий промежуток времени,
  • были распространены на значительной территории,
  • их окаменелости части встречаются и легко определяются.

При определении возраста среди найденных в изучаемом слое ископаемых выбираются наиболее для него характерные, затем они сопоставляются с атласами руководящих форм, описывающими, какому интервалу времени свойственны те или иные формы. Первый из таких атласов был создан ещё в середине XIX века палеонтологом Г. Бронном.

На сегодняшний день основным в биостратиграфии является метод анализа органических комплексов . При применении этого метода вывод об относительном возрасте строится на сведениях обо всём комплексе окаменелостей, а не на находках единичных руководящих форм, что значительно повышает точность.

В ходе геологических исследований стоят задачи не только расчленения толщ по возрасту и отнесения их к какому-либо интервалу геологической истории, но и сопоставления – корреляции – удалённых друг от друга одновозрастных толщ. Наиболее простым методом выявления одновозрастных толщ является прослеживание слоёв на местности от одного обнажения к другому. Очевидно, что этот метод эффективен только в условиях хорошей обнажённости. Более универсальным является биостратиграфический метод сопоставления характера органических остатков в удалённых разрезах – одновозрастные слои обладают одинаковым комплексом окаменелостей. Этот метод позволяет проводить региональную и глобальную корреляцию разрезов.

Принципиальная модель использования окаменелостей для корреляции удалённых разрезов отражена на рисунке.

Одновозрастными являются слои, содержащие одинаковый комплекс окаменелостей

Абсолютная геохронология

Методы абсолютной геохронологии позволяют определить возраст геологических объектов и событий в единицах времени. Среди этих методов наиболее распространены методы изотопной геохронологии, основанные на подсчёте времени распада радиоактивных изотопов, заключенных в минералах (или, например, в остатках древесины или в окаменелых костях животных).

Сущность метода заключена в следующем. В состав некоторых минералов входят радиоактивные изотопы. С момента образования такого минерала в нём протекает процесс радиоактивного распада изотопов, сопровождающийся накоплением продуктов распада. Распад радиоактивных изотопов протекает самопроизвольно, с постоянной скоростью, не зависящей от внешних факторов; количество радиоактивных изотопов убывает в соответствии с экспоненциальным законом. Принимая во внимания постоянство скорости распада, для определения возраста достаточно установить количество оставшегося в минерале радиоактивного изотопа и количество образовавшегося при его распаде стабильного изотопа. Эта зависимость описывается главным уравнением геохронологии :

Для определения возраста используются многие радиоактивные изотопы: 238 U, 235 U, 40 K, 87 Rb, 147 Sm и др. Названия изотопно-геохронологических методов обычно образуются из названий радиоактивных изотопов и конечных продуктов их распада: уран-свинцовый, калий-аргоновый и т.д. Результаты определения возраста геологических объектов выражаются в 106 и 109 лет, или в значениях Международной системы единиц (СИ): Ma и Ga. Эта аббревиатура означает, соответственно, «млн. лет» и « млрд. лет» (от лат. Mega anna – млн. лет, Giga anna – млрд. лет ).

Рассмотрим определение возраста рубидий-стронциевым изохронным методом . В результате распада радиоактивного изотопа 87 Rb происходит образование нерадиоактивного продукта распада – 87 Sr, постоянная распада составляет 1,42*10 -11 лет -1 . Применение изохронного метода предполагает анализ нескольких образцов, взятых из одного и того же геологического объекта, что повышает точность определения возраста и позволяет рассчитать исходный изотопный состав стронция (используемый для определения условий формирования породы).

В ходе лабораторных исследований определяются содержания 87 Rb и 87 Sr, при этом содержание последнего складывается из суммы стронция, изначально содержащегося в минерале (87 Sr) 0 , и стронция, возникшего в процессе радиоактивного распада 87 Rb за период существования минерала:

На практике измеряются не содержания указанных изотопов, а их отношения к стабильному изотопу 86Sr, что даёт более точные результаты. Вследствие этого уравнение приобретает вид

В полученном уравнении имеются два неизвестных: время t и начальное отношение изотопов стронция. Для решения задачи анализируются несколько образцов, результаты наносятся в виде точек на график в координатах 87 Sr/ 86 Sr – 87 Rb/ 86 Sr. В случае корректно отобранных проб все точки ложатся вдоль одной прямой – изохроны (следовательно, имеют один и тот же возраст). Возраст анализируемых образцов рассчитывается по величине угла наклона изохроны, а начальное стронциевое отношение определяется по пересечению изохронной оси 87 Sr/ 86 Sr.

В случае если на графике точки не ложатся на одну линию можно говорить о некорректности подбора проб. Во избежание этого необходимо соблюдать следующие главные условия:

  • образцы должны отбираться из одного геологического объекта (т.е. быть заведомо одновозрастными);
  • в ии следуемых породах не должно быть признаков наложенных преобразований, которые могли привести к перераспределению изотопов;
  • образцы должны обладать одинаковым изотопным составом стронция во время возникновения (недопустимо использование различных пород при построении одной изохроны).

Не останавливаясь на методики определения возраста другими методами, отметим лишь особенности некоторых из них.

В настоящее время наиболее точным считается самарий – неодимовый метод , принятый в качестве стандарта, с которым сравниваются данные других методов. Это связано с тем, что в силу геохимических особенностей данные элементы наименее подвержены влиянию наложенных процессов, часто значительн о искажающих или сводящих на нет результаты определений возраста. Метод основан на распаде изотопа 147 Sm с образованием в качестве конечного продукта распада 144 Nd.

Калий – аргоновый метод основан на распаде радиоактивного изотопа 40 К. Этот метод давно и широко используется для определения возраста всех генетических типов горных пород. Он наиболее эффективен при определении времени формирования осадочных пород и минералов, например, глауконита. Применительно к магматическим и особенно метаморфическим породам, затронутым наложенными изменениями, этот метод часто даёт «омоложенные» датировки, что связано с потерей подвижного аргона.

Радиоуглеродный метод основан на распаде изотопа 14 С, образующегося в верхних слоях атмосферы в результате воздействия космического излучения на атмосферные газы (азот, аргон, кислород). В последствии 14 С, как и нерадиоактивный изотоп углерода, образует углекислый газ СО 2 , и в его составе вовлекается в фотосинтез, оказываясь таким образом в составе растений и, далее, пищевой цепочке передается животным. В гидросферу 14 С попадает в результате обмена СО 2 между атмосферой и Мировым океаном, далее он оказывается в костях и карбонатных раковинах водных обитателей. Интенсивное перемешивание воздушных масс в атмосфере и активное участие углерода в глобальном круговороте химических элементов приводит к выравниванию концентраций 14 С в атмосфере, гидросфере и биосфере. Для живых организмов равновесное состояние достигается при удельной активности 14 С, составляющей 13,56 ± 0.07 распадов в минуту на 1 грамм углерода. Если организм умирает, то прекращается поступление 14С; в результате радиоактивного распада (перехода в нерадиоактивный 14 N) удельная активность 14 С уменьшается. Измерив значение активности в пробе и сопоставив её со значением удельной активности в живой ткани, несложно рассчитать время прекращения жизнедеятельности организма по формуле

///////////////

Радиоуглеродного датирование позволяет определять возраст образцов, содержащих углерод (кости, зубы, раковины, древесина, уголь и т.д.) возрастом до 70 тыс. лет. Это определяет его использование в четвертичной геологии и, особенно, в археологии.

В завершение рассмотрения методов изотопной геологии следует отметить, что, несмотря на получение «абсолютных», выраженных в годах, датировок, мы имеет дело с модельным возрастом – полученные результаты неизбежно содержат некоторую ошибку и, более того, продолжительность астрономического года в ходе длительной геологической истории менялась.

Ещё одна группа методов абсолютной геохронологии представлена сезонно-климатическими методами . Примером такого метода служит варвохронология – метод абсолютной геохронологии, основанный на подсчёте годичных слоёв в «ленточных» отложениях приледниковых озёр. Для приледниковых озёр характерными отложениями служат так называемые «ленточные глины» - чётко слоистые осадки, состоящие из большого числа параллельных лент. Каждая лента – результат годичного цикла осадконакопления в условиях озёр, находящихся большую часть года в замерзшем состоянии. Она всегда состоит из двух слоёв. Верхний – зимний – слой представлен глинами темного цвета (за счёт обогащения органикой), образованного под ледяным покровом; нижний – летний – сложен более грубозернистыми светлоокрашенными осадками (в основном тонкими песками или алевро-глинистыми отложениями), образованными за счёт приносимого в озеро талыми ледниковыми водами материала. Каждая пара таких слойков соответствует 1 году.

Изучение ритмичности ленточных глин позволяет не только определять абсолютный возраст, но и проводить корреляцию расположенных неподалёку друг от друга разрезов, сопоставляя мощности слоёв.

На сходном принципе основан и подсчёт годичных слоёв в осадках соляных озёр, где летом, за счёт повышения испарения, происходит активное осаждение солей.

К недостаткам сезонно-климатических методов следует отнести их неуниверсальность.

Периодизация геологической истории. Cтратиграфическая и геохронологическая шкалы

Оперируя категорией относительного времени необходимо иметь универсальную шкалу периодизации истории. Так, применительно к истории человечества, мы употребляем выражения «до нашей эры», «в эпоху Возрождения», «в XX веке» и т.п., относя какое-либо событие или предмет материальной культуры к определённому временному интервалу. Аналогичный подход принят и в геологии, для этих целей разработаны Международная геохронологическая шкала и Международная стратиграфическая шкала.

Основную информацию о геологической истории Земли несут слои горных пород, в которых, как на страницах каменной летописи, запечатлены происходившие на планете изменения и эволюция органического мира (последняя «запечатлена» в комплексах окаменелостей, содержащихся в разновозрастных слоях). Слои горных пород, занимающие определённое положение в общей последовательности напластований и выделяемые на основании присущих им особенностей (чаще - комплекса ископаемых), являются стратиграфическими подразделениями . Горные породы, слагающие стратиграфические подразделения, формировались на протяжении определённого интервала геологического времени, и, следовательно, отражают эволюцию земной коры и органического мира за этот промежуток времени.

– шкала, показывающая последовательность и соподчинённость стратиграфических подразделений, слагающих земную кору и отражающих пройденные землёй этапы исторического развития. Объектом стратиграфической шкалы являются слои горных пород. Основа современной стратиграфической шкалы была разработана ещё в первой половине XIX века и была принята в 1881 г. на II сессии Международного геологического конгресса в Болонье. Позднее стратиграфическая шкала была дополнена геохронологической шкалой.

Геохронологическая шкала – шкала относительного геологического времени, показывающая последовательность и соподчинённость основных этапов геологической истории Земли и развития жизни на ней. Объектом геохронологической шкалы является геологическое время.

Шкала геологического времени (или геохронометрическая шкала) представляет собой последовательный ряд датировок нижних границ общих стратиграфических подразделений, выраженных в единицах времени (чаще в миллионах лет) и вычисленных с помощью методов абсолютного датирования.

Объектом геохронологической шалы служат геохронологические подразделения – интервалы геологического времени, в течение которого образовались горные породы, входящие в состав данного стратиграфического подразделения.

Всем стратиграфическим подразделениям соответствуют подразделения геохронологической шкалы.

При этом практически все стратиграфические подразделения ранга эонотема - система имеют единые общепринятые международные наименования.

Наиболее крупными стратиграфическими подразделениями являются акротемы и эонотемы. Архейскую и протерозойскую акротемы объединяют под названием «докембрий» (т. е. толщи пород, накопившиеся до кембрийского периода – первого периода фанерозоя) или «криптозой». Рубежом докембрия и фанерозоя служит появление в слоях горных пород остатков скелетных организмов. В докембрии органические остатки редки, поскольку мягкие ткани быстро разрушаются, не успев захорониться. Сам термин «криптозой» образовано при слиянии корней слов «криптос» - скрытый и «зоэ» - жизнь . При расчленении докембрийских толщ на дробные стратиграфические подразделения важнейшую роль имеют методы изотопной геохронологии, поскольку органические остатки редки или вообще отсутствуют, определяются с трудом и, главное, не подвержены быстрой эволюции (однотипные комплексы микрофауны остаются неизменными на протяжении огромных интервалов времени, что не позволяет расчленять толщи по этому признаку).

Эонотемы включают в свой состав эратемы. Эратема , или группа - отложени, образовавшиеся в течение эры ; продолжительность эр в фанерозое составляет первые сотни миллионов лет. Эратемы отражают крупные этапы развития Земли и органического мира. Границы между эратемами соответствуют переломным рубежам в истории развития органического мира. В фанерозое выделяют три эратемы: палеозойскую, мезозойскую и кайнозойскую.

Эратемы, в свою очередь, включают в свой состав системы. Система – это отложения, образовавшиеся в течение периода ; длительность периодов составляет десятки миллионов лет. Одна система от другой отличается комплексами фауны и флоры на уровне надсемейств, семейств и родов. В фанерозое выделяются 12 систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная (карбоновая), пермская, триасовая, юрская, меловая, палеогеновая, неогеновая и четвертичная (антропогеновая). Названия большинства систем происходят от географических названий тех местностей, где они были впервые установлены. Для каждой системы на геологических картах приняты определенный цвет, являющийся международным, и индекс, образованный начальной буквой латинского названия системы.

Отдел - часть системы, соответствующая отложениям, образовавшимся в течение одной эпохи ; длительность эпох обычно составляет первые десятки миллионов лет. Отличия между отделами проявляются в различии фауны и флоры на уровне родов или групп. Названия отделов даны по положению их в системе: нижний, средний, верхний или только нижний и верхний; эпохи соответственно называют ранней, средней, поздней.

В составе отдела выделяются ярусы. Ярус - отложения, образовавшиеся в в течение века ; продолжительность веков составляет несколько миллионов лет.

Наряду с основными подразделениями стратиграфической и геохронологической шкал применяются региональные и местные подразделения.

К региональным стратиграфическим подразделениям относятся горизонт и лона.

Горизонт - основное региональное подразделение стратиграфической шкалы, объединяющее одновозрастные отложения, характеризующиеся определенным комплексом литологических и палеонтологических признаков. Горизонтам присваиваются географические названия, соответствующие местам, где они наиболее хорошо представлены и изучены. Геохронологическим эквивалентом служит время . Например, хапровский горизонт, распространённый на побережье Таганрогского залива Азовского моря, соответствует толще речных песков, сформировавшихся в конце неогенового периода. Стратотип (наиболее представительный разрез стратиграфического горизонта, являющийся его эталоном) этого горизонта расположен у ст. Хапры. Добавим, что термин «горизонт», употребляемый без географического названия, понимается как слой или пачка слоёв, выделяемых на основании каких-либо особенностей (палеонтологических или литологических), то есть является обозначением свободного пользования.

Лона является частью горизонта выделяемой по комплексу фауны и флоры, характерному для данного региона, и отражает определенную фазу развития органического мира данного региона. Название лоны даётся по виду-индексу. Геохронологическим эквивалентом лоны является время.

Местные стратиграфические подразделения представляют собой толщи пород, выделяемые по ряду признаков, в основном по литологическому или петрографическому составу.

Комплекс - самое крупное местное стратиграфическое подразделение. Комплекс имеет очень большую мощность, сложный состав горных пород, сформированных в течение какого-то крупного этапа развития территории. Комплексу присваивается географическое название по характерному месту его развития. Чаще всего комплексы выделяются при расчленении метаморфических толщ.

Серия охватывает достаточно мощную и сложную по составу толщу горных пород для которых имеются какие-то общие признаки: сходные условия образования, преобладание определенных типов горных пород, близкая степень деформаций и метаморфизма и т.д. Серии обычно соответствуют единому крупному циклу развития территории.

Основной единицей из местных стратиграфических подразделений представляет собой является свита. Свита представляет собой толщу пород, образованных в определенной физико-географической обстановке и занимающих установленное стратиграфическое положение в разрезе. Главные особенности свиты - наличие устойчивых литологических признаков на всей площади ее распространения и четкая выраженность границ. Свое название свита получает по географическому местонахождению стратотипа.

Границы местных стратиграфических подразделений часто не совпадают с границами подразделений единой стратиграфической шкалы.

В процессе работы геологом часто приходится использовать также вспомогательные стратиграфические подразделения - толща, пачка, слой, залежь, и т. д., называемые обычно по характерным породам, цвету, литологическим особенностям или по характерным органическим остаткам (толща известняков, слои с Matra fabriana и т.п.).

Планеты Земля. Чтобы узнать возраст горных пород, исполь-зуют их абсолютный и относительный возраст .

Абсолютный возраст горных пород определяется по способности не-которых радиоактивных элементов к саморазложению в природных условиях. Относительный возраст определяется по условиям залега-ния осадочных горных пород, особенностям их состава, встречающим-ся останкам живших в прошлые эпохи организмов . Понятно, что более глубокие слои отражают более древние геологические события.

Изученность возраста горных пород позволила составить геохронологическую таблицу (таблицу геологического летоисчисления).

В геологической истории выделяют крупные временные отрезки — эры и периоды .

В геологическом прошлом выделяется самая древняя архейская эра , за которой следуют протерозойская , палеозойская , мезозойская , кай-нозойская . Каждая эра делится на периоды. Самый ранний из них — докембрийский .

Обратите внимание на то, что геохронологическая таблица строится от древнейших этапов к современному и читать её нужно снизу вверх. Для каждой эры показываются соответствующий ей этап развития климата, живой природы, главнейшие геологические события и наибо-лее характерные полезные ископаемые.

Геохронологическая таблица (таблица геологического летоисчисления)

Эра и её про-дол-жи-тель-ность (млн лет)

Период

Главные геологические события

Эволюция природы и органического мира

Полезные ископаемые

Начало (млн лет назад)

Продол-житель-ность (млн лет)

Эпоха склад-чатости

Изменения в облике Земли

Кайнозой (67)

(2) Четвертичный (2)

Альпийская

Общее поднятие территории, увеличение суши. Накопление снега в горах и неоднократные оледенения. Формирование современного рельефа

Появление современного человека. Появление человекоподобных пред-ков

Строительные материалы (гли-ны, песок), россыпные место-рождения золота, алмазов

(25) Неогеновый (23,5)

Мощный вулканизм, горообразование в Альпийско-Тихоокеан-ском подвижном поясе. На территории России — образование новых горных сооружений (Кавказ, Камчатка). Возникновение котловин морей — Чёрного, Каспийского, Охотского, Японского

Появление безлесных ландшафтов — степей, саванн, а также галерейных тропических лесов. Распространение копытных, грызунов. Появление новых насекомых (кузнечиков)

Бурые угли, нефть, каменная соль, осадочные руды железа, строитель-ные материалы (гранит, мрамор)

(67) Палеогеновый (42)

Разрушение мезозойских гор. Наступление морей. Накопление осадков. Начало альпийской складчатости

Господство млекопитающих. Появление саблезубых тигров и мамонтов. Распространение птиц и костных рыб

Бурые угли, нефть, горючие сланцы

Мезозой (163)

(137) Меловой (70)

Киммерийская (Мезозойская)

Образование новых горных сооружений. На территории России — горы Северо-Восточной Сибири (хребты Верхоянский, Черского) и Дальнего Востока (Сихотэ-Алинь). Поднятие платформ

В конце периода — гибель динозавров на суше, морских ящеров и ам-монитов в Океане. Возникают все группы современных млекопитаю-щих. Покрытосеменные, цветковые растения. Флора становится похо-жей на современную

Каменный уголь, нефть, горючие сланцы, фосфориты, мел, руды олова, мышьяка, сурьмы, золота, серебра, меди, свинца

(195) Юрский (58)

Затопление морями. Накопление осадков. Мощное горообразо-вание. Расколы платформ. Поднятие разрушенных гор байкаль-ской складчатости

Жаркий и влажный климат. Появление млекопитающих. Царство динозав-ров. Лесная растительность приобретает зональный характер

Каменный уголь, горючие слан-цы, фосфориты

(230) Триасовый (35)

Поднятие суши. Самое обширное отступление моря. Разрушение домезозойских гор. Формирование осадочного чехла платформ

Сухой климат. Появление динозавров (двуногих ящеров). Хвойные леса. Первые зверообразные хищники (зверозубые) — предшественники млекопитающих

Каменная соль, нефть, уголь

Палеозой

(285) Пермский (55)

Герцинская

Завершение герцинской складчатости. Образование новых горных сооружений. Поднятие древних платформ. На территории России — образование Уральских гор, Алтая. Возникновение фундаментов Западно-Сибирской и Туранской платформ, Скифской платформы

Сухой климат. Постепенное исчезновение папоротниковых и хвощевых лесов. Пресмыкающиеся становятся яйцекладущими

Каменная и калийная соли, гипс, уголь, нефть, горючий газ

(350) Каменноугольный (75-65)

Опускание суши. Затопление древних платформ. Новый этап го-рообразования. На территории России — активизация тектониче-ских движений в Урало-Тянь-Шаньском подвижном поясе. Расколы погружающейся Сибирской платформы и излияния лавы (образо-вание базальтовых покровов — сибирских траппов)

Увеличение площади заболоченных низменностей. Жаркий и влажный климат. Расцвет папоротниковых и хвощевых лесов. Появление голосе-менных хвойных растений. Расцвет земноводных. Появление насекомых (стрекоз) и пресмыкающихся (рептилий)

Обилие угля и нефти. Медные, оловянно-вольфрамовые, поли-металлические руды

(410) Девонский (60)

Каледонская

Отступание морей. Поднятия, сменившиеся к концу периоде опусканиями. Уменьшение силы тектонических движений. Разру-шение гор. Выравнивание рельефа

Усиление континентальности климата, появление первых пустынь. Древ-ние амфибии. Широкое распространение наземных растений. Выход позвоночных на сушу. Великое вторжение жизни на сушу

Нефть, горючий газ, лечебные минеральные воды

(440) Силурийский (30)

Горообразование между докембрийскими структурами. Подня-тие древних платформ. На территории России — образование Саян восточной части Алтая

Кистепёрые рыбы, костные рыбы. Хрящевые рыбы. Появление позво-ночных. Первые наземные растения-псилофиты

Железные, медные и другие ру-ды, золото, фосфориты, горю-чие сланцы

(500) Ордовикский (60) Материал с сайта

Уменьшение площади морей, вулканизм. Начало каледонской складчатости

Появление панцирных рыб

(570) Кембрийский (70)

Затухание горообразования, медленное опускание материков затопление обширных участков суши. Разрушение и сглаживание гор. Накопление осадочных пород

Кораллы, губки, моллюски, членистоногие (раки и трилобиты)

Бокситы, фосфориты, осадочные руды марганца и железа, камен-ная соль, гипс

Проте-розой

Байкальская

Мощный вулканизм, горообразование вокруг древних плат-форм. На территории России — горные системы Забайкалья, Прибайкалья, Тиманский и Енисейский кряжи

Многоклеточные существа, водоросли. Простейшие клеточные формы в глубинах бескислородного Океана

Огромные запасы железных руд, полиметаллические руды, гра-фит, строительные материалы

Архей

(более 3500) (более 900)

Древнейший вулканизм и горообразование, формирование ядер древних платформ. На территории России — Восточно-Европейская и Сибирская платформы

Первые формы жизни

На этой странице материал по темам:

В наших школах и институтах официально преподают идею о том, что возраст нашей Земли исчисляется многими миллионами лет. Чтобы подтвердить эту точку зрения, как научную, приводится геохронологическая таблица с долгими эрами и периодами, которые ученые якобы вычислили по слоям осадочных пород и их окаменелостям в них. Приведу пример урока:

"Учитель: Многие годы геологи, изучая горные породы, пытались определить возраст Земли. Но ещё недавно они были далеки от успеха. В начале 17 века архиепископ Армы - Джеймс Ашер, вычислил дату сотворения мира по Библии, и определил её как 4004 г. до н. э.

Но он ошибался более чем в миллион раз. Сегодня учёные считают, что возраст Земли – 4600 миллионов лет. Наука, которая занимается изучением возраста Земли по расположению горных пород, называется геологией."

(Геохронологическая таблица фото №1)

(геохронологическая таблица фото №2)

Эти данные ученики принимают на веру, доверяя на слово преподавателю и не проверяя, а насколько правдива эта информация и соответствует ли она действительности. На самом деле уже давно известно множество научных доказательств, которые геохронологическую таблицу показывают недействительной. Есть ученые, которые имеют другую точку зрения на периоды истории нашей Земли. Например, Геологическая модель Уокера, модифицированная Клевбергом:

(Геохронологическая таблица фото №3)

Я думаю, каждый человек, ученик он или учитель, должен основательно перепроверить те официальные данные, которые он получает и сформировать свои собственные убеждения, основанные не на предвзятых догадках, но на научных изысканиях. Чтобы разобраться, какие гипотезы ученых ближе к истине, а какие нет, читайте статьи с другой точкой зрения на геохронологическую таблицу, чем официальная точка зрения, преподаваемая в учебных заведениях.

Этапы развития планеты. Большое значение для геогра­фической науки имеет умение определять возраст Земли и земной коры, а также время значительных событий, про­изошедших в истории их развития. История развития пла­неты Земля делится на два этапа: планетарный и геологи­ческий.

Планетарный этап охватывает период времени от за­рождения Земли как планеты и до образования земной коры. Научная гипотеза об образовании Земли (как космического тела) появилась на основе общих взглядов на зарождение других планет, входящих в состав Солнечной системы. О том, что Земля - одна из 8 планет Солнечной системы, вы знаете из курса 6 класса. Планета Земля образовалась 3,5- 5 млрд лет назад. Этот этап закончился с появлением пер­вичных литосферы, атмосферы и гидросферы (3,7-3,8 млрд лет назад).

Геологический этап начался с момента появления пер­вых зачатков земной коры, который и продолжается по на­стоящее время. В этот период образовались различные гор­ные породы. Земная кора не раз подвергалась медленным поднятиям и опусканиям под влиянием внутренних сил. В периоды опускания территории затапливались водой и на дне откладывались осадочные породы (пески, глины и др.), а в периоды поднятия дна моря здесь возникали рав­нины, сложенные этими осадочными породами.

Таким образом, первоначальное строение земной коры стало изменяться. Этот процесс продолжался непрерывно. На дне морей и впадин материков накапливался осадочный слой горных пород, среди которых находились остатки рас­тений и животных. Каждому геологическому периоду со­ответствуют их определенные вилы, потому что органичес­кий мир находится в постоянном развитии.

Определение возраста горных пород. Для того чтобы определить возраст Земли и представить историю ее геоло­гического развития, используют методы относительного и абсолютного летосчисления (геохронологию).

Чтобы определить относительный возраст горных пород, необходимо знать закономерности последовательного за­легания слоев осадочных горных пород разного состава. Суть их состоит в следующем: если слон осадочных горных пород залегают в ненарушенном состоянии, так, как они один за другим отлагались на дне морен, то это значит, что слой, лежащий внизу, отложился раньше, а слой, лежащий выше, образовался позднее, следовательно, он моложе.

Действительно, если не будет нижнего слоя, то ясно, что покрывающий его верхний слой не может образоваться, по­этому чем ниже расположен осадочный слой, тем больше его возраст. Самый верхний слой считается самым моло­дым.

В определении относительного возраста горных пород большое значение имеет изучение последовательного зале­гания осадочных пород разного состава и содержащихся в них окаменелых остатков животных и растительных орга­низмов. В результате кропотливой работы ученых но опре­делению геологического возраста горных пород и времени развития растительных и животных организмов была со­ставлена геохронологическая таблица. Она была утвержде­на на II Международном геологическом конгрессе в 1881 году в Болонье. В ее основе - этапы развития жизни, выяв­ленные палеонтологией. Эта таблица-шкала постоянно со­вершенствуется. Современное состояние таблицы приведе­но на с. 45.

Единицами шкалы являются эры. Они делятся на перио­ды, которые подразделяются на эпохи. Пять самых круп­ных из этих подразделений (эры) носят названия, связанные с характером существовавшей тогда жизни. Например, ар- хей - время ранней жизни, п[ютерозой - эра первичной жизни, палеозой - эра древней жизни, мезозой - эра сред­ней жизни, кайнозой - эра новой жизни.

Эры подразделяются на менее длительные отрезки вре­мени - периоды (иногда их называют системами). Названия их различны. Одни из них происходят от названий горных пород, которые наиболее характерны для этого времени (на­пример карбоновый период в палеозое и меловой период в мезозое). Большинство периодов названо но тем местнос­тям, в которых наиболее полно представлены отложения того или иного периода и где впервые эти отложения были охарактеризованы. Древнейший период палеозоя - кемб рийский получил название от Кембрия - древнего государ­ства на западе Англии. Названия следующих периодов па леозоя - ордовикский и силурский - происходят от названий древних племен ордовиков и силуров, населявших террито­рию нынешнего Уэльса.

Чтобы различать системы геохронологической таблицы, приняты условные знаки. Геологические эры обозначаются индексами (знаками) - начальными буквами их латинских названий (например архей - AR ), а индексы периодов - пер­вой буквой их латинских названий (например пермский Р).

Определение абсолютного возраста горных пород нача­лось в начале XX века, после того как был открыт закон распада радиоактивных элементов. Суть его состоит в сле­дующем. В недрах Земли находятся радиоактивные элемен­ты, например уран. С течением времени он медленно, с по­стоянной скоростью, распадается на гелий и свинец. Гелий рассеивается, а свинец остается в породе. Зная скорость рас­пада урана (из 100 г урана в течение 74 млн лет выделяет­ся 1 г свинца), по количеству свинца, содержащегося в гор­ной породе, можно подсчитать, сколько лет назад она обра­зовалась.

Использование радиометрических методов позволило оп­ределять возраст многих горных пород, слагающих земную кору. Благодаря этим исследованиям удалось установить геологический и планетарный возраст Земли. На основе от­носительного и абсолютного методов летосчисления и была составлена геохронологическая таблица.

1. На какие этапы делится геологическая история развития Земли?

2. Какой этап развития Земли является геологическим?

3*. Как определяют относительный и абсолютный возраст горных пород?

1. Сравните по геохронологической таблице продолжительность гео­логических эр и периодов.

Стратиграфическая (г еохронологическая) шкала – ш кала геологического времени, этапы которой выделены палеонтологией по развитию жизни на Земле.

Два названия этой шкалы несут разный смысл: стратиграфическая шкала служит для описания последовательности и взаимоотношений горных пород, слагающих земную кору, а геохронологическая – для описания геологического времени. Отличаются эти шкалы в терминологии, ознакомиться с отличиями можно в таблице ниже:

Общие стратиграфические

подразделения (стратоны)

Подразделения

геохронологической шкалы

Акротема Акрон
Эонотема Эон
Эратема Эра
Система Период
Отдел Эпоха
Ярус Век

Таким образом, мы можем сказать, что, например, толща известняков относится к меловой системе , но известняки образовались в меловой период .

Системы, отделы, ярусы могут быть верхними или нижними, а периоды, эпохи и века – ранними или поздними.

Путать эти термины нельзя.

Фанерозой

Фанерозойский эон включает в себя три эры, названия которых должны быть известны многим: палеозой (эра древней жизни), мезозой (эра средней жизни) и кайнозой (эра новой жизни). Эры в свою очередь делятся на периоды. Палеозойские: кембрий, ордовик, силур, девон, карбон, пермь; мезозойские: триас, юра, мел; кайнозойские: палеоген, неоген и четвертичный. Каждый период имеет своё буквенное обозначение и свой цвет для обозначения на геологических картах.

Запомнить порядок периодов довольно просто с помощью мнемонического приёма. Первая буква каждого слова в приведённых ниже двух предложениях соответствует первой букве периода:

К аждый О бразованный С тудент Д олжен К урить П апиросы. Т ы, Ю рчик, М ал, П ойди Н айди Ч инарик.

Символ Цвет
Кембрий Голубовато-зелёный
Ордовик O Оливковый
Силур S Серо-зелёный
Девон D Коричневый
Карбон C Серый
Пермь P Жёлто-коричневый
Триас T Фиолетовый
Юра J Голубой
Мел K Светло-зелёный
Палеоген P * Оранжевый
Неоген N Жёлтый
Четвертичный Q Желтовато-серый

*символ палеогена может не отображаться, т.к. содержится не во всех шрифтах: это символ рубля (Р с горизонтальной чертой)

Докембрий

Архейский и протерозойский акроны являются более древними подразделениями, кроме того, на их долю приходится большая часть существования нашей планеты. Если фанерозой длился около 530 млн лет, то один только протерозой – больше полутора миллиардов лет.